Juan Peypouquet

Email     email
Phone     +56223037335
Office     A061 (San Joaquín, Santiago)
Research area     Optimization and Variational Analysis
Personal page        
Juan Peypouquet
  1. Briceño L, Dinh H. N, Peypouquet J. Existence, stability and optimality for optimal control problems governed by maximal monotone operators. Journal of Differential Equations 2016;260(1):733-757.  [Digital version]  [Bibtex]
  2. Frankel P, Garrigos G, Peypouquet J. Splitting methods with variable metric for KL functions and general convergence rates. Journal of Optimization Theory & Applications 2015;165:874-900. [Bibtex]
  3. Attouch H, Peypouquet J, Redont P. A dynamical approach to an inertial forward-backward algorithm for convex minimization. SIAM Journal on Optimization 2014;24(1):232-256. [Bibtex]
  4. Noun N, Peypouquet J. Forward-backward penalty scheme for constrained convex minimization without inf-compactness. Journal of Optimization Theory and Applications 2013;158(3):787-795. [Bibtex]
  5. Peypouquet J. Coupling the gradient method with a general exterior penalization scheme for convex minimization. Journal of Optimization Theory and Applications 2012;153(1):123-138. [Bibtex]
  6. Frankel P, Peypouquet J. Lagrangian-penalization algorithm for constrained optimization and variational inequalities. Set-Valued and Variational analysis 2012;20(2):169-185. [Bibtex]
  7. Attouch H, Czarnecki M.-O, Peypouquet J. Prox-Penalization and Splitting Methods for Constrained Variational Problems. SIAM Journal on Optimization 2011;21(1):149-173. [Bibtex]
  8. Álvarez F, Peypouquet J. A unified approach to the asymptotic almost-equivalence of evolution systems without Lipschitz conditions. Nonlinear Analysis: Theory, Methods & Applications 2011;74(11):3440-3444. [Bibtex]
  9. Attouch H, Cabot A, Frankel P, Peypouquet J. Alternating proximal algorithms for constrained variational inequalities. Application to domain decomposition for PDE's. Nonlinear Analysis: Theory, Methods & Applications 2011;74(18):7455-7473. [Bibtex]
  10. Attouch H, Czarnecki M.-O, Peypouquet J. Coupling forward-backward with penalty schemes and parallel splitting for constrained variational inequalities. SIAM Journal on Optimization 2011;21(4):1251-1274. [Bibtex]
  11. Peypouquet J, Sorin S. Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time. J. Convex Anal. 2010;17(3-4):1113—1163.  [Digital version]  [Bibtex]
  12. Álvarez F, Peypouquet J. Asymptotic almost-equivalence and ergodic convergence of Lipschitz evolution systems in Banach spaces. Nonlinear Analysis: Theory, Methods & Applications 2010;73(9):3018-3033.  [Digital version]  [Bibtex]
  13. Álvarez F, Peypouquet J. Asymptotic equivalence and Kobayashi-type estimates for nonautonomous monotone operators in Banach spaces. Discrete Contin. Dyn. Syst. 2009;25(4):1109-1128.  [Digital version]  [Bibtex]
  14. Peypouquet J. Asymptotic convergence to the optimal value of diagonal proximal iterations in convex minimization. J. Convex Anal. 2009;16(1):277-286.  [Digital version]  [Bibtex]
  15. Cominetti R, Peypouquet J, Sorin S. Strong asymptotic convergence of evolution equations governed by maximal monotone operators with Tikhonov regularization. J. Differential Equations 2008;245(12):3753-3763.  [Digital version]  [Bibtex]
  1. Núcleo Científico Milenio ICM/FIC RC130003: Information and coordination in networks
  2. Conicyt REDES: AM2V-MODEMAT network on optimization and control
  3. FONDECYT 1140829: Dynamical systems and algorithms for optimization and equilibrium problems involving nonsmooth and nonconvex functions
  4. ECOS C13E03: Dynamical systems and algorithms in nonsmooth and nonconvex optimization problems
  5. FONDECYT Postdoctoral No. 3130497 - Global Dynamics and Bifurcations: Insight into Theory and Applications
[ Back ]
JA slide show