Alberto Mercado

Email     email
Phone     (56 32) 2654482
Office     F 334 (Casa Central, Valparaiso)
Research area     Control of PDE and Inverse Problems
Personal page        
Alberto Mercado
 
Publications:
  1. Araruna F. D, Cerpa E, Mercado A, Santos M. C. Internal null controllability of a linear Schrodinger-KdV system on a bounded interval. Journal of Differential Equations 2016;260(1):653–687.  [Digital version]  [Bibtex]
  2. Cerpa E, Mercado A, Pazoto A. Null controllability of the stabilized Kuramoto-Sivashinsky system with one distributed control. SIAM J. Control Optim. 2015;53(3):1543-1568.  [Digital version]  [Bibtex]
  3. Baudouin L, Cerpa E, Emmanuelle C, Mercado A. On the determination of the principal coefficient from boundary measurements in a KdV equation. J. Inverse Ill-Posed Probl. 2014;22(6):819-846.  [Digital version]  [Bibtex]
  4. Baudouin L, Cerpa E, Crépeau E, Mercado A. Lipschitz stability in an inverse problem for the Kuramoto-Sivashinsky equation. Appl. Anal. 2013;92(10):2084-2102.  [Digital version]  [Bibtex]
  5. Cerpa E, Mercado A, Pazoto A. On the boundary control of a parabolic system coupling KS-KdV and Heat equations. Scientia Series A: Mathematical Sciences 2012;22:55-74.  [Digital version]  [Bibtex]
  6. Cerpa E, Mercado A. Local exact controllability to the trajectories of the 1-D Kuramoto-Sivashinsky equation. J. Differential Equations 2011;250(4):2024-2044.  [Digital version]  [Bibtex]
  7. Baudouin, Mercado A. An inverse problem for Schrodinger equations with discontinuous main coefficient. Appl. Anal 2008;87:1145-1165.  [Digital version]  [Bibtex]
  8. Mercado A, Osses, Rosier. Inverse problems for the Schrodinger equation via Carleman inequalities with degenerate weights. Inverse Problems 2008;24:15-17.  [Digital version]  [Bibtex]
  9. Mercado A, Osses, Rosier. Carleman inequalities and inverse problems for the Schrodinger equation. C. R. Math. Acad. Sci. Paris 2008;346(1-2):53-58.  [Digital version]  [Bibtex]
  10. Guerrero, Mercado A, Osses. An inverse inequality for some transport-diffusion equation. Application to the regional approximate controllability. Asymptotic Analysis 2007;52(3-4):243-257.  [Digital version]  [Bibtex]
  11. Baudouin, Mercado A, Osses. A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem. Inverse Problems 2007;23:257-278.  [Digital version]  [Bibtex]
        
Projects:
  1. Conicyt REDES: AM2V-MODEMAT network on optimization and control
  2. Math-Amsud Control Systems and Identification Problemst COSIP 14MATH-03.
  3. FONDECYT Regular: CONTROLLABILITY AND INVERSE PROBLEMS FOR SCHRODINGER EQUATIONS.
  4. MathAmsud 08MATH04: Controllability and Inverse Problems in PDE's
  5. FONDECYT 11080130. Carleman estimates and applications to inverse problems and control.
 
 
[ Back ]
JA slide show