Alberto Mercado

Email     email
Phone     (56 32) 2654482
Office     F 334 (Casa Central, Valparaiso)
Research area     Control of PDE and Inverse Problems
Personal page        
Alberto Mercado
  1. Araruna F. D, Cerpa E, Mercado A, Santos M. C. Internal null controllability of a linear Schrodinger-KdV system on a bounded interval. Journal of Differential Equations 2016;260(1):653–687.  [Digital version]  [Bibtex]
  2. Cerpa E, Mercado A, Pazoto A. Null controllability of the stabilized Kuramoto-Sivashinsky system with one distributed control. SIAM J. Control Optim. 2015;53(3):1543-1568.  [Digital version]  [Bibtex]
  3. Baudouin L, Cerpa E, Emmanuelle C, Mercado A. On the determination of the principal coefficient from boundary measurements in a KdV equation. J. Inverse Ill-Posed Probl. 2014;22(6):819-846.  [Digital version]  [Bibtex]
  4. Baudouin L, Cerpa E, Crépeau E, Mercado A. Lipschitz stability in an inverse problem for the Kuramoto-Sivashinsky equation. Appl. Anal. 2013;92(10):2084-2102.  [Digital version]  [Bibtex]
  5. Cerpa E, Mercado A, Pazoto A. On the boundary control of a parabolic system coupling KS-KdV and Heat equations. Scientia Series A: Mathematical Sciences 2012;22:55-74.  [Digital version]  [Bibtex]
  6. Cerpa E, Mercado A. Local exact controllability to the trajectories of the 1-D Kuramoto-Sivashinsky equation. J. Differential Equations 2011;250(4):2024-2044.  [Digital version]  [Bibtex]
  7. Baudouin, Mercado A. An inverse problem for Schrodinger equations with discontinuous main coefficient. Appl. Anal 2008;87:1145-1165.  [Digital version]  [Bibtex]
  8. Mercado A, Osses, Rosier. Inverse problems for the Schrodinger equation via Carleman inequalities with degenerate weights. Inverse Problems 2008;24:15-17.  [Digital version]  [Bibtex]
  9. Mercado A, Osses, Rosier. Carleman inequalities and inverse problems for the Schrodinger equation. C. R. Math. Acad. Sci. Paris 2008;346(1-2):53-58.  [Digital version]  [Bibtex]
  10. Baudouin, Mercado A, Osses. A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem. Inverse Problems 2007;23:257-278.  [Digital version]  [Bibtex]
  11. Guerrero, Mercado A, Osses. An inverse inequality for some transport-diffusion equation. Application to the regional approximate controllability. Asymptotic Analysis 2007;52(3-4):243-257.  [Digital version]  [Bibtex]
  1. Conicyt REDES: AM2V-MODEMAT network on optimization and control
  2. Math-Amsud Control Systems and Identification Problemst COSIP 14MATH-03.
  4. MathAmsud 08MATH04: Controllability and Inverse Problems in PDE's
  5. FONDECYT 11080130. Carleman estimates and applications to inverse problems and control.
[ Back ]
JA slide show