Erwin Hernández

Email     email
Phone     (56 2) 432 6662
Office     A 061 (Campus San Joaquín, Santiago)
Research area     Numerical Analysis of PDE
Personal page        
Erwin Hernández
 
Publications:
  1. Allendes A, Hernández E, Otárola E. A robust numerical method for a control problem of singularly perturbed equations. Computer and Mathematics with Applications. An International Journal 2016;72(4):974-991. [Bibtex]
  2. Hernández E, Cascón J. M, Engdahl A, Ferragut L. A reduced basis for a local high definition wind model. Computer Methods in Applied Mechanics and Engineering 2016;311:438-456. [Bibtex]
  3. Hernández E, Kalise D, Braun P. Reduced-order LQG control of a Timoshenko beam model.. Bull Braz Math Soc. New Series 2016;47(1):143-155. [Bibtex]
  4. Spa C, Hernández E, Caloen S. V. A Finite element approximations of a structural acoustic control problem with a Timoshenko beam interface. Journal of Mathematical Analysis and Applications 2015;424:1125-1142. [Bibtex]
  5. Spa C, Hernández E, Anton R. A parallel GPU implementation of an explicit compact FDTD algorithm with a digital impedance filter for room acoustics applications.. IEEE/ACM Transactions on Audio, Speech, and Language Processing 2015;23(8):1368-1380. [Bibtex]
  6. Spa C, Hernández E, Pedro R.-L. Numerical Absorbing Boundary Conditions Based on a Damped Wave Equation for Pseudo-Spectral Time-Domain Acoustic Simulations. The Scientific World Journal, 2014;2014(9):285945. [Bibtex]
  7. Hernández E, Duarte S. Active control of sloshing in containers with elastic baffle plates. International Journal for Numerical Methods in Engineering 2012;91:604-621. [Bibtex]
  8. Hernández E, Barrios T, Bustinza R, García G. On Stabilized mixed methods for generalized Stokes problem based on the velocity-pseudostress formulation: A priori error estimates.. Computer Methods in Applied Mechanics and Engineering 2012;237–240:78-87. [Bibtex]
  9. Allendes A, Barrenechea G, Hernández E, Valentin F. A two-level Enriched finite element method for a mixed problem. Mathematics of Computation 2011;80(273):11-41.  [Digital version]  [Bibtex]
  10. Hernández E, Kalise D, Otárola E. A locking-free scheme for the LQR control of a Timoshenko beam. Journal on computational and Applied Mathematics 2011;(235):1383-1393.  [Digital version]  [Bibtex]
  11. Hernández E, Gamallo P, Peters A. On the error estimates for the finite element approximation of a class of boundary optimal control systems. Numerical Functional Analysis and Optimization 2011;32(4):383-396. [Bibtex]
  12. Hernández E, Otárola E. A superconvergent scheme for a locking free FEM in a Timoshenko optimal control problem. Zamm-Z. Agnew. Math. Mech 2011;91(4):288-299. [Bibtex]
  13. Hernández E, Kalise D, Otárola E. Numerical approximation of the LQR problem in a strongly damped wave equation. Computational Optimization and Applications 2010;47:161-178.  [Digital version]  [Bibtex]
  14. Hernández E, Gamallo P. Error estimates for the approximation of a class of optimal control systems governed by linear PDEs. Numerical Functional Analysis and Optimization 2009;30(5):523 – 547.  [Digital version]  [Bibtex]
  15. Hernández E, Otárola E. A locking free FEM in active vibration control of a Timoshenko beam. SIAM Journal on Numerical Analysis 2009;47(4):2432-2454.  [Digital version]  [Bibtex]
  16. Hernández E, Hervella-Nieto L. Finite element approximation of free vibration of folded plates. Computer Methods in Applied Mechanics and Engineering 2009;98:1360-1367.  [Digital version]  [Bibtex]
  17. Hernández E. Finite element approximation of the elasticity spectral problem on curved domains. Journal of Computational and Applied Mathematics 2009;225:452-458.  [Digital version]  [Bibtex]
  18. Hernández E, Otárola E, Rodríguez R, Sanhueza F. Approximation of the vibration modes of a Timoshenko curved rod of arbitrary geometry. IMA Journal of Numerical Analysis 2009;29:180-207.  [Digital version]  [Bibtex]
  19. Zambra M, Fernández J, Hernández E, Pasten D, Muñoz V. Current Sheet Thickness in the Plasma Focus Snowplow Model. Journal of Plasma Fusion and Research Series 2009;8. [Bibtex]
  20. Hernández E, Rodríguez R, Otárola E, Sanhueza F. Finite Element Approximation of the Vibration Problem for a Timoshenko Curved Rod. Revista de la Unión Argentina 2008;49:15-28. [Bibtex]
  21. Hernández E. Approximation of the vibration modes of plate and shells coupled with a fluid. Journal of Applied Mechanics, Trans. of the ASME 2006;73:1005-1010. [Bibtex]
  22. Hernández E. Approximation of the vibration modes of a plate coupled with a fluid by low-order isoparametric finite elements. ESAIM: M2AN (Mathematical Modelling and Numerical Analysis) 2004;38:1055-1070. [Bibtex]
  23. Hernández E, Rodríguez R. Finite Element approximation of spectral acoustic problems on curved domains. Numeritche Mathematik 2004;97:131-158.  [Digital version]  [Bibtex]
  24. Hernández E, Hervella-Nieto L, Rodríguez R, Liberman E, Durán R. Error stimated for low order isoparametric quadrilateral finite elements for plates. SIAM Journal on Numerical Analysis 2003;41:1751-1752.  [Digital version]  [Bibtex]
  25. Hernández E, Hervella-Nieto L, Rodríguez R. Computation of the vibration modes of plates and shells by low order MITC quadrilateral finite elements. Computers and structures 2003;81:615-628.  [Digital version]  [Bibtex]
  26. Hernández E, Rodríguez R. Finite Element approximation of spectral problems with Newman Boundary Conditions on Curved Domains. Mathematics of computation 2003;72:1099-1115.  [Digital version]  [Bibtex]
  27. Hernández E, Hervella-Nieto L, Rodríguez R. Computation of the vibration modex of plates and shells coupled with a fluid. Computational machanics 2002;21:2453-2162. [Bibtex]
  28. Hernández E, Gatica G, Mellado M. A domain decomposition method for linear exterior boundary value problems. Applied Mathematical Letters 1998;11(6):1-9. [Bibtex]
        
Projects:
  1. Conicyt REDES: AM2V-MODEMAT network on optimization and control
  2. FONDECYT N°1140392: Numerical Methods for control problems and Applications
  3. Conicyt (Inserción a la academia) 79090008: Fortalecimiento del grupo de Análisis y Modelamiento Matemático Valparaíso
  4. FONDECYT No1070276: Further Developments in numerical analysis and vibration control of slender structures.
  5. FONDECYT No7070123: Further Developments in numerical analysis and vibration control of slender structures.
 
 
 
 
[ Back ]
JA slide show