Leonelo Iturriaga

Email     email
Phone     (56 2) 4326693
Office     A 059 (Campus Santiago, San Joaquín
Research area     Nonlinear Analysis of PDE
Personal page        
liturriaga
 
Publications:
  1. Barrios B, García-Melián J, Iturriaga L. Semilinear elliptic equations and nonlinearities with zeros. Nonlinear Anal. 2016;134:117-126.  [Digital version]  [Bibtex]
  2. Iturriaga L, García-Melián J, Quoirin H. R. A Priori Bounds and Existence of Solutions for Slightly Superlinear Elliptic Problems. Adv. Nonlinear Stud. 2015;15(3):923-938.  [Digital version]  [Bibtex]
  3. Iturriaga L, García-Melián J. Multiplicity of solutions for some semilinear problems involving nonlinearities with zeros. Israel J. Math. 2015;210(1):233-244.  [Digital version]  [Bibtex]
  4. Iturriaga L, Dos Santos E. M, Ubilla P. Local minimizers in spaces of symmetric functions and applications. J. Math. Anal. Appl. 2015;429(1):27-56.  [Digital version]  [Bibtex]
  5. Iturriaga L, Massa E, Sánchez J, Ubilla P. Positive solutions for an elliptic equation in an annulus with a superlinear nonlinearity with zeros. Mathematische Nachrichten 2014;287(10):1131-1141.  [Digital version]  [Bibtex]
  6. Iturriaga L, Souto M. A, Ubilla P. Quasilinear Problems Involving Changing-Sign Nonlinearities Without an Ambrosetti–Rabinowitz-Type Condition. Proceedings of the Edinburgh Mathematical Society 2014;57(3):755-762.  [Digital version]  [Bibtex]
  7. Alarcón S, Quaas A, Iturriaga L. Existence and multiplicity results for Pucci's operators involving nonlinearities with zeros. Cal. Var. 2012;45:443-454. [Bibtex]
  8. Iturriaga L, Lorca S, Saavedra E, Ubilla P. Quasilinear equations involving nonlinear Neumann boundary conditions. Differential Integral Equations 2012;25(7-8):657-664. [Bibtex]
  9. Iturriaga L, Lorca S, Ubilla P. A quasilinear problem without the {A}mbrosetti-{R}abinowitz-type condition. Proc. Roy. Soc. Edinburgh Sect. A 2010;140(2):391-398.  [Digital version]  [Bibtex]
  10. Iturriaga L, Sánchez J. Exact number of solutions of stationary reaction-diffusion equations. Appl. Math. Comput. 2010;216(4):1250-1258.  [Digital version]  [Bibtex]
  11. Iturriaga L, Lorca S, Massa E. Positive solutions for the {$p$}-{L}aplacian involving critical and supercritical nonlinearities with zeros. Ann. Inst. H. Poincaré Anal. Non Linéaire 2010;27(2):763-771.  [Digital version]  [Bibtex]
  12. Iturriaga L, Lorca S, Montenegro M. Existence of solutions to quasilinear elliptic equations with singular weights. Adv. Nonlinear Stud. 2010;10(1):109-120. [Bibtex]
  13. Iturriaga L, Massa E, Sánchez J, Ubilla P. Positive solutions of the {$p$}-{L}aplacian involving a superlinear nonlinearity with zeros. J. Differential Equations 2010;248(2):309-327.  [Digital version]  [Bibtex]
  14. Iturriaga L, Lorca S, Sánchez J. Existence and multiplicity results for the {$p$}-{L}aplacian with a {$p$}-gradient term. NoDEA Nonlinear Differential Equations Appl. 2008;15(6):729-743.  [Digital version]  [Bibtex]
  15. Brock F, Iturriaga L, Ubilla P. A multiplicity result for the {$p$}-{L}aplacian involving a parameter. Ann. Henri Poincaré 2008;9(7):1371-1386.  [Digital version]  [Bibtex]
  16. Iturriaga L. Existence and multiplicity results for some quasilinear elliptic equation with weights. J. Math. Anal. Appl. 2008;339(2):1084-1102.  [Digital version]  [Bibtex]
  17. Iturriaga L, Lorca S. Existence and multiplicity results for degenerate elliptic equations with dependence on the gradient. Bound. Value Probl. 2007:Art. ID 47218, 12. [Bibtex]
  18. Brock F, Iturriaga L, Sánchez J, Ubilla P. Existence of positive solutions for {$p$}-{L}aplacian problems with weights. Commun. Pure Appl. Anal. 2006;5(4):941-952.  [Digital version]  [Bibtex]
  19. Brock F, Iturriaga L, Ubilla P. Semi-linear singular elliptic equations with dependence on the gradient. Nonlinear Anal. 2006;65(3):601-614.  [Digital version]  [Bibtex]
        
Projects:
  1. FONDECYT 1120842: Multiplicity of solutions for quasilinear and non-local elliptic problems
  2. FONDECYT 11080203: Perturbed quasilinear and semilinear elliptic equations.
  3. FONDECYT 3060061: Generalized quasilinear elliptic equations with singular weights.
Theses:
 
 
[ Back ]
JA slide show