Eduardo Cerpa

Email     email
Phone     (56 2) 4327336
Office     A 063 (Campus San Joaquin, Santiago)
Research area     Control of PDE and Inverse Problems
Personal page        
Eduardo Cerpa
  1. Araruna F. D, Cerpa E, Mercado A, Santos M. C. Internal null controllability of a linear Schrodinger-KdV system on a bounded interval. Journal of Differential Equations 2016;260(1):653–687.  [Digital version]  [Bibtex]
  2. Carreño N, Cerpa E, Calsavara B. Insensitizing controls for a phase field system. Nonlinear Anal. 2016;143:120-137.  [Digital version]  [Bibtex]
  3. Carreño N, Cerpa E. Local controllability of the stabilized Kuramoto–Sivashinsky system by a single control acting on the heat equation. J. Math. Pures Appl. 2016;106(4):670-694.  [Digital version]  [Bibtex]
  4. Cerpa E, Mercado A, Pazoto A. Null controllability of the stabilized Kuramoto-Sivashinsky system with one distributed control. SIAM J. Control Optim. 2015;53(3):1543-1568.  [Digital version]  [Bibtex]
  5. Cerpa E. Control of a Korteweg-de Vries equation: a tutorial. Math. Control Relat. Fields 2014;4(1):45-99.  [Digital version]  [Bibtex]
  6. Baudouin L, Cerpa E, Emmanuelle C, Mercado A. On the determination of the principal coefficient from boundary measurements in a KdV equation. J. Inverse Ill-Posed Probl. 2014;22(6):819-846.  [Digital version]  [Bibtex]
  7. Cerpa E, Coron J.-M. Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition. IEEE Transactions on Automatic Control 2013;58(7):1688-1695.  [Digital version]  [Bibtex]
  8. Cerpa E, Rivas I, Zhang B.-Y. Boundary controllability of the Korteweg-de Vries equation on a bounded domain. SIAM J. Control Optim. 2013;51(4):2976-3010.  [Digital version]  [Bibtex]
  9. Baudouin L, Cerpa E, Crépeau E, Mercado A. Lipschitz stability in an inverse problem for the Kuramoto-Sivashinsky equation. Appl. Anal. 2013;92(10):2084-2102.  [Digital version]  [Bibtex]
  10. Cerpa E, Mercado A, Pazoto A. On the boundary control of a parabolic system coupling KS-KdV and Heat equations. Scientia Series A: Mathematical Sciences 2012;22:55-74.  [Digital version]  [Bibtex]
  11. Cerpa E, Mercado A. Local exact controllability to the trajectories of the 1-D Kuramoto-Sivashinsky equation. J. Differential Equations 2011;250(4):2024-2044.  [Digital version]  [Bibtex]
  12. Cerpa E, Pazoto A. A note on the paper "On the controllability of a coupled system of two Korteweg-de Vries equations". Comm. Contemp. Math. 2011;13(1):183-189.  [Digital version]  [Bibtex]
  13. Smyshlyaev A, Cerpa E, Krstic M. Boundary stabilization of a 1-D wave equation with in-domain anti-damping. SIAM J. Control Optim. 2010;48(6):4014-4031.  [Digital version]  [Bibtex]
  14. Cerpa E. Null controllability and stabilization of a linear Kuramoto-Sivashinsky equation. Commun. Pure Appl. Anal. 2010;9(1):91-102.  [Digital version]  [Bibtex]
  15. Cerpa E, Crépeau E. Rapid exponential stabilization for a linear Korteweg-de Vries equation. Discrete Contin. Dyn. Syst. Ser. B 2009;11(3):655-668.  [Digital version]  [Bibtex]
  16. Cerpa E, Crépeau E. Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain. Ann. Inst. H. Poincaré Anal. Non Linéaire 2009;26(2):457-475.  [Digital version]  [Bibtex]
  17. Cerpa E. Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain. SIAM J. Control Optim. 2007;46(3):877-899.  [Digital version]  [Bibtex]
  1. Conicyt REDES: AM2V-MODEMAT network on optimization and control
  2. Math-Amsud Control Systems and Identification Problemst COSIP 14MATH-03.
  3. Conicyt (Inserción a la academia) 79090008: Fortalecimiento del grupo de Análisis y Modelamiento Matemático Valparaíso
  4. Fondecyt No. 11090161: Controllability of nonlinear partial differential equations
  5. MathAmsud 08MATH04: Controllability and Inverse Problems in PDE's
[ Back ]
JA slide show