Eduardo Cerpa

Email     email
Phone     (56 2) 4327336
Office     A 063 (Campus San Joaquin, Santiago)
Research area     Control of PDE and Inverse Problems
Personal page        
Eduardo Cerpa
  1. Carreño N, Cerpa E. Local controllability of the stabilized Kuramoto–Sivashinsky system by a single control acting on the heat equation. J. Math. Pures Appl. 2016;106(4):670-694.  [Digital version]  [Bibtex]
  2. Araruna F. D, Cerpa E, Mercado A, Santos M. C. Internal null controllability of a linear Schrodinger-KdV system on a bounded interval. Journal of Differential Equations 2016;260(1):653–687.  [Digital version]  [Bibtex]
  3. Carreño N, Cerpa E, Calsavara B. Insensitizing controls for a phase field system. Nonlinear Anal. 2016;143:120-137.  [Digital version]  [Bibtex]
  4. Cerpa E, Mercado A, Pazoto A. Null controllability of the stabilized Kuramoto-Sivashinsky system with one distributed control. SIAM J. Control Optim. 2015;53(3):1543-1568.  [Digital version]  [Bibtex]
  5. Cerpa E. Control of a Korteweg-de Vries equation: a tutorial. Math. Control Relat. Fields 2014;4(1):45-99.  [Digital version]  [Bibtex]
  6. Baudouin L, Cerpa E, Emmanuelle C, Mercado A. On the determination of the principal coefficient from boundary measurements in a KdV equation. J. Inverse Ill-Posed Probl. 2014;22(6):819-846.  [Digital version]  [Bibtex]
  7. Cerpa E, Coron J.-M. Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition. IEEE Transactions on Automatic Control 2013;58(7):1688-1695.  [Digital version]  [Bibtex]
  8. Cerpa E, Rivas I, Zhang B.-Y. Boundary controllability of the Korteweg-de Vries equation on a bounded domain. SIAM J. Control Optim. 2013;51(4):2976-3010.  [Digital version]  [Bibtex]
  9. Baudouin L, Cerpa E, Crépeau E, Mercado A. Lipschitz stability in an inverse problem for the Kuramoto-Sivashinsky equation. Appl. Anal. 2013;92(10):2084-2102.  [Digital version]  [Bibtex]
  10. Cerpa E, Mercado A, Pazoto A. On the boundary control of a parabolic system coupling KS-KdV and Heat equations. Scientia Series A: Mathematical Sciences 2012;22:55-74.  [Digital version]  [Bibtex]
  11. Cerpa E, Mercado A. Local exact controllability to the trajectories of the 1-D Kuramoto-Sivashinsky equation. J. Differential Equations 2011;250(4):2024-2044.  [Digital version]  [Bibtex]
  12. Cerpa E, Pazoto A. A note on the paper "On the controllability of a coupled system of two Korteweg-de Vries equations". Comm. Contemp. Math. 2011;13(1):183-189.  [Digital version]  [Bibtex]
  13. Smyshlyaev A, Cerpa E, Krstic M. Boundary stabilization of a 1-D wave equation with in-domain anti-damping. SIAM J. Control Optim. 2010;48(6):4014-4031.  [Digital version]  [Bibtex]
  14. Cerpa E. Null controllability and stabilization of a linear Kuramoto-Sivashinsky equation. Commun. Pure Appl. Anal. 2010;9(1):91-102.  [Digital version]  [Bibtex]
  15. Cerpa E, Crépeau E. Rapid exponential stabilization for a linear Korteweg-de Vries equation. Discrete Contin. Dyn. Syst. Ser. B 2009;11(3):655-668.  [Digital version]  [Bibtex]
  16. Cerpa E, Crépeau E. Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain. Ann. Inst. H. Poincaré Anal. Non Linéaire 2009;26(2):457-475.  [Digital version]  [Bibtex]
  17. Cerpa E. Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain. SIAM J. Control Optim. 2007;46(3):877-899.  [Digital version]  [Bibtex]
  1. Conicyt REDES: AM2V-MODEMAT network on optimization and control
  2. Math-Amsud Control Systems and Identification Problemst COSIP 14MATH-03.
  3. Conicyt (Inserción a la academia) 79090008: Fortalecimiento del grupo de Análisis y Modelamiento Matemático Valparaíso
  4. Fondecyt No. 11090161: Controllability of nonlinear partial differential equations
  5. MathAmsud 08MATH04: Controllability and Inverse Problems in PDE's
[ Back ]
JA slide show